READY

WP1 Workshop no. 6

Meeting in Paris 4-5 May 2017

"Final design, monitoring and mobility"

Ringgaarden afd. 20, Trigeparken Heating installations

- > Objectives
 - 1. Demonstration of low temperature DH housing installations 55/25°C
 - 2. Reduce heat loss from piping installations (50% reduction compared with standard)
 - 3. Test solution with "flatstations" vs solution with central domestic hot water tank
 - 4. Test waste water heat recovery
 - 5. Test PVT panels used as heat absorbers for heat pumps
 - 6. Possible improved PVT on one block

4 4-5 MAY 2017 WP1 WORKSHOP 6

DH Heating Shunt – direct connection

Min 50°C flow temp

Optimised flatstation from Danfoss

- > Advantages
 - > designed for low temperature DH
 - > insulated to lowest heat loss in market
 - > superefficient heat exchanger HEX
 - > cold HEX under idle load e_{save}[™]
 - > integrated differential pressure control
 - > no circulation of hot water max 4 l vol.in pipes
 - > stainless steel
 - > no limestone fouling
 - > no legionella
 - > 32,3 kW DHW

Flat-station installation for DHW

Akva Les II TD

Connection of heat pump for waste water heat recovery

Location of waste water heat exchangers

Spildevandsbrønd nr. 1 tilhørende varmepumpe nr. 1 monteres på spildevandledning fra blok 13 og 14. Spildevandsbrønd placeres mellem brøndene KS9.9 og KS9.10

Waste water heat exchanger

2 x ø 42 mm

11 4-5 MAY 2017 WP1 WORKSHOP 6

General principle

4-5 MAY 2017 WP1 WORKSHOP 6

13

> PVT energy absorber

Hot tap water DHW

System performance as a function of PVT area Calculated for one block.

PVT modules for heat pump. Performance as a function of the PVT area. Valid for one block.

PVT area	m²	220	110	55	27
Solar thermal energy to the system	kWh	34.842	33.767	32.348	29.113
Electricity production	kWh	29.863	16.208	8.061	3.785
Thermal production per m ² PVT	kWh/m²	158	307	588	1.078
Electricity production per m ² PVT	kWh/m²	136	147	147	140
Balance					
Demand for hot tap water	kWh	47.700	47.700	47.700	47.700
Circulation loss	kWh	6.000	6.000	6.000	6.000
Heat from heat pump		36.100	36.600	37.700	37.100
District heating		11.000	12.500	13.200	15.900
СОР		4,1	4,0	4,0	3,9

As we install 220m² we can improve the PVT e.g. with transparent insulation on one block <

System performance for various size of storage tanks

Storage tank size. Solar / heat pump / water tank (m³). Valid for one block.

Storage tanks m ³	3 -2 - 1	1.5 - 2 - 1	1.5 - 1.5 - 1	1.5 - 1 - 1	1 - 1 - 1
PVT area	220	220	220	220	220
Solar thermal energy to the system					
	34.100	33.200	33.200	33.300	32.800
Electricity production	29.800	29.800	29.800	29.800	29.800
Thermal production per m ² PVT					
	155	151	151	151	149
Electricity production per m ² PVT					
	135	135	135	135	135
Demand for hot tap water	47.700	47.700	47.700	47.700	47.700
Heat from heat pump					
	35.700	36.500	36.400	36.300	36.900

Day 2

Agen	da: 4 th May morning, General and Aarhus
08:30	Registration and coffee
09:00	Advanced training programme (1 hour 30 min.)
	Discussion and feed back
10:30	Break
11:00	Communication: Latest activities (15 min.)
11:15	Behavioural campaign (45 min.) Status of Task 8.9
12:00	Energy Cities Conference - Stuttgart (15 min.) Short report from latest dissemination activity
12:15	Lunch
13:30	Transport with metro
14:30	Site visit at the ECO-neighbourhood "Le Trapèze". Address: Ile Seguin, 92100 Boulogne Billancourt. Guided tour through the neighbourhood which used to be a Renault Factory
16:00	End of site visit and program

